Korovkin-type approximation on C∗-algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative Korovkin-Type Results on Conservative Approximation

The well-known result of Korovkin [4] states that for a sequence of positive linear operators [Kn]n 1 , such that Kn f converges uniformly to f in the particular cases f (t)=1, f (t)=t, and f (t)=t, then it also converges for every continuous real function f. The set [1, t, t] is called a Korovkin set. This result was a starting point for the development of a related theory. Since then many pap...

متن کامل

Matrix Summability and Korovkin Type Approximation Theorem on Modular Spaces

In this paper, using a matrix summability method we obtain a Korovkin type approximation theorem for a sequence of positive linear operators defined on a modular space.

متن کامل

Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

متن کامل

Korovkin type approximation theorems in B-statistical sense

In this paper we consider the notion of A2 -statistical convergence for real double sequences which is an extension of the notion of AI -statistical convergence for real single sequences introduced by Savas, Das and Dutta. We primarily apply this new notion to prove a Korovkin type approximation theorem. In the last section, we study the rate of A2 -statistical convergence.

متن کامل

A - Statistical extension of the Korovkin type approximation theorem

Let A = (a jn) be an infinite summability matrix. For a given sequence x := (xn), the A-transform of x, denoted by Ax := ((Ax) j), is given by (Ax) j = ∑n=1 a jnxn provided the series converges for each j ∈ N, the set of all natural numbers. We say that A is regular if limAx = L whenever limx = L [4]. Assume that A is a non-negative regular summability matrix. Then x = (xn) is said to be A-stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1982

ISSN: 0021-9045

DOI: 10.1016/0021-9045(82)90014-4